1. Chapters
- Chapter 1. Introduction: Basic Concepts
- Chapter 2. Probability Distributions
- Chapter 3. Linear Models for Regression
- Chapter 4. Linear Models for Classfication
- Chapter 5. Neural Networks
Chapter 6. Kernel Methods
Chapter 7. Sparse Kernel Machines
- Chapter 9. Mixture Models and EM
- Chapter 10. Approximate Inference
- Chapter 11. Sampling Methods
- Cahpter 12. Continous Latent Variable
- Chapter 13. Sequential Data
- Chapter 14. Combining Models
2. Solution
Bishop-Pattern-Recognigion-and-Machine-Learning-2006-Solution